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Localized vortices with a semi-integer charge in nonlinear dynamical lattices
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The topological chargeS of vortexlike configurations in two-dimensional~2D! dynamical lattices need not
necessarily be integer, nor is it a dynamical invariant. Accordingly, we demonstrate that the discrete nonlinear
Schrödinger~DNLS! equation in 2D has stationary solutions in the form of a vortex withS51/2, which does
not exist in the model’s continuum counterpart. Analysis of the DNLS equation linearized about the vortex
shows that it is stable except for, possibly,extremely weakinstabilities~at the level of numerical precision!.
Direct simulations of the full DNLS model in 2D show that theS51/2 vortex soliton is a stable oscillating
solution. This behavior of classical dynamical lattices is in contrast with a recently reported result by Clay
et al. @Phys. Rev. Lett.86, 4085~2001!#, according to which fractional charges inquantumlattices are subject
to dynamical rearrangement into integer charges. We also considerS51 discrete vortices that may be built as
a pair ofS51/2 ones. These are different from the cross-shapedS51 vortices that were recently found in the
same 2D model. TheS51 vortices found in this work have larger energy and a slightly smaller stability range.
We also find an analog of theS51/2 vortices in the 1D DNLS model, which also turns out to be a stable
oscillating soliton, different from the twisted localized modes recently found in the 1D model.

DOI: 10.1103/PhysRevE.65.016605 PACS number~s!: 41.20.Jb, 63.20.Pw
o
st
ca
by

a

ot
th

n
nd

-

se,

qs.

ed

a-

rete
I. INTRODUCTION

Nonlinear lattice equations naturally arise as models
various physical systems, and are also a subject of intere
their own right as an important class of nonlinear dynami
systems@1,2#. A fundamental lattice model is represented
the discrete nonlinear Schro¨dinger~DNLS! equation with cu-
bic on-site nonlinearity, which finds straightforward applic
tions, both theoretical@3# and experimental@4#, in the trans-
verse dynamics of arrays of optical waveguides~fibers! with
the Kerr nonlinearity. It is also used as a generic asympt
envelope equation for nonlinear discrete equations of
Klein-Gordon ~including sine-Gordon! type @5#, which
model physical phenomena ranging from Josephson ju
tions @6# to the local denaturation of the DNA double stra
@7#.

The one-dimensional~1D! DNLS equation is

i ċn52CD2cn2ucnu2cn , ~1!

wherecn is the dynamical field,n is the lattice discrete co
ordinate, andD2cn[cn111cn2122cn is the 1D discrete
Laplacian. The coupling constantC is related to the lattice
spacingh by

C51/h2. ~2!
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The 2D version of the model is

i ċm,n52CD2cm,n2ucm,nu2cm,n , ~3!

where the 2D discrete Laplacian isD2cm,n[cm11,n
1cm,n111cm21,n1cm,n2124cm,n . Both the 1D and 2D
equations can be derived from a Hamiltonian. In the 2D ca
it is

H5(
m,n

FC~ ucm11,n2cm,nu2

1ucm,n112cm,nu2!2
1

2
ucm,nu4G . ~4!

It is customary to seek standing-wave solutions to E
~1!–~3! in the form

cm,n5exp~ iLt !um,n , ~5!

whereL is the frequency of the solution. Recently, localiz
1D solutions subject to the symmetry constraintu(2n)5
2u(n), with n51,2,3, . . . ~where the lattice site withn
50 either hasu0[0, or is dropped by definition! were found
@8#. Their linear stability and dynamical properties were an
lyzed in Ref. @9#. Thesetwisted localized modes~TLMs!
were then used to construct stable two-dimensional disc
©2001 The American Physical Society05-1
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vortex solitons in Ref.@10# ~2D vortices were mentioned in
some earlier works@2,11#, but their detailed structure an
stability were not studied before!. In particular, the fact tha
the TLM modes have an inherentp phase difference be
tween the regionsn→2` andn→1` was crucial in con-
structing the vortices in Ref.@10#; namely, by using a set o
two such modes, one in the real part of the solution alo
one of the two spatial directions, and another one in
imaginary part along the orthogonal direction, a 2p phase
difference may be lent to the entire pattern. This proced
makes it possible to generate a discrete cross-shaped v
soliton, whose structure qualitatively resembles
continuum-limit vortex wave form ;exp(iu), u being the
polar angle in the lattice plane. The investigation of the l
ear stability of these solitons in Ref.@10# revealed that the
TLM structure of their constituents may give rise to an o
cillatory instability at large values of the coupling constantC
~this instability is similar to those considered in Refs.@9,12#!.
However, the cross-shaped vortices arestableif the coupling
constant is smaller than a certain critical value,C,Ccr , i.e.,
if the model is not too close to its continuum limit. Vortice
with the double topological charge were also found in R
@10#, but they all turned out to be unstable; it is very pla
sible that all the higher-order vortices are unstable too
should be noted, in passing, that it has been conjectu
~work toward proving that conjecture is currently in progre
@13#! that the presence of thep phase shift in TLMs and, in
general, in pulse-antipulse bound states, of which TLMs
a special case, is generically related to potential oscillat
instabilities.

Thus, recent work@8–10# has revealed the possibility o
existence of stable solutions with an integer~in fact, unitary!
topological charge in 2D dynamical lattices. A nontrivial a
pect of this result is that, contrary to the continuum mode
in lattice systems the topological charge isnot a dynamical
invariant. Therefore, the very existence of such station
solutions is not obvious. Moreover, in continuum models
calized vortices can easily be found, but in most cases t
are strongly unstable. Only nonlinearities of a special ty
such as those combining quadratic and self-defocusing c
terms, make it possible to construct families of localized v
tices that are stable in a broad parametric region@14#.

Since the definition of the topological charge in dynam
cal lattices is less precise than in continuum media, the q
tion naturally arises as to whetherfractionally chargedvor-
tices are possible in 2D lattices. In fact, we will focus sole
on the single noninteger value of the topological charge~or
vorticity! S51/2. Upon finding such solutions, we will in
vestigate their stability by using them as initial conditions
direct numerical simulations.

An additional motivation for this work is the recentl
published results concerning fractionally charged states
quantumlattice models@15#. That work aimed to explain the
absence of experimental observation of fractionally char
solitons inp-conjugated polymers and charge-density-wa
solids. It was found that, once fractional charges were in
duced ‘‘by hand’’ in the quantum-lattice models considere
further dimerization of the semi-integer charges into inte
ones inevitably followed, as the system evolved in time.
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will see herein that the same result is not true for class
Hamiltonian dynamical lattices, such as that governed by
DNLS equation. Instead, we findstableoscillating 2D soli-
tons with semi-integer vorticity. This result prompts us th
to reconsider the 1D case; as a result, we also find stable
counterparts of theS51/2 vortex solitons. Additionally, in
the 2D lattice we study integer-charged vortices~with S
51) to which the semi-integer-charged ones would reco
bine if they were subject to reintegerization. These prove
be stable localized solutions different from the cross-sha
ones considered in Refs.@9,10#.

The paper is organized as follows. In Sec. II we pres
stationary solutions in the form of localized vortices in tw
dimensions with the semi-integer topological chargeS51/2,
and also the stable vortices withS51 into which theS
51/2 ones would recombine if they were unstable. ThesS
51 stable vortices exist despite the fact that the recomb
tion does not actually take place. In Sec. III, following th
analogy with the 2D problem, similar semi-integer-charg
solutions are studied in a 1D DNLS model, and are a
found to be stable oscillatory solutions. The results are su
marized in Sec. IV.

II. SEMI-INFINITE-CHARGE VORTICES, AND SÄ1
VORTICES, IN THE TWO-DIMENSIONAL LATTICE

A. Revisiting discrete localized vortices with an integer charge

Before considering the fractionally charged lattice vor
ces in detail, it is relevant to summarize the approach to
study of integer-charge ones, developed in Ref.@10#. In that
work a dual twisted ansatz was considered, consisting o
TLM in the real and a TLM in the imaginary parts of th
solution, a configuration with a 2p phase shift nested in it
hence bearing a nontrivial vorticity. This configuration w
fed, as an initial guess, into a Newton solver of the system
nonlinear algebraic equations

Lum,n5CD2um,n1uum,nu2um,n , ~6!

which results from the substitution of the ansatz~5! into Eq.
~3!. Notice that one of the parametersL andC can be scaled
out from Eq. ~6!; however, for the sake of clarity of the
results to be obtained below, we keep both parameters, fi
L and studying the behavior of solutions as a function ofC.

The Newton iterations typically converge up to a pr
scribed accuracy@usually O(1028)#. Once the solution was
obtained, linear stability analysis was performed, substitut
cm,n5exp(iLt)@cm,n1vm,n(t)# with infinitesimal perturba-
tions vm,n(t) into Eq. ~3!, to derive the linearized equatio
for vm,n ,

i v̇m,n1CD2vm,n12uum,nu2vm,n1um,n
2 vm,n* 2Lvm,n50,

~7!

where* denotes complex conjugation. Looking for solutio
of Eqs. ~7! in the form vm,n5am,n exp(2ivt)
1bm,n exp(iv* t) leads to an eigenvalue problem forv @10#,
which can be solved numerically. It was thus found that
discrete vortex solitons with the unitary topological char
5-2
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FIG. 1. The initial configuration generating
fractionally charged solution withS51/2 for L
50.32 andC50.001. The top left and right pan
els show the absolute value and phase of the fie
respectively. The bottom left and right pane
show the real and imaginary parts of the fiel
respectively.
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S51 are stable forC,Ccr . For instance,Ccr(L50.32)
'0.126. If C.Ccr , one of the eigenvaluesv collides with
the continuous spectrum and, due to its opposite Krein
nature~see, e.g., Refs.@2,9,12,16,17#!, the corresponding bi-
furcation gives rise to a quartet of eigenvalues which gen
ate an oscillatory instability. This is the so-calle
Hamiltonian Hopf bifurcation@18#. It should be remarked
that this instability scenario is inherited from the 1D co
stituents of the 2D discrete vortex~i.e., two orthogonally
oriented TLMs!. In fact, the 2D nature of the vortex does n
strongly alter the coupling strength at which the instabil
occurs, in comparison with the 1D counterpart of the TL
type. In particular, the 2D critical value is to be compared
the critical valueCcr50.138 found for the same frequenc
L50.32 in the 1D system.

B. Vortices with the semi-integer topological charge

A vortex with a topological chargeS51/2 can be formally
sought for in a continuum medium as a solution;exp(iu/2).
In fact, in the continuum setting it cannot exist becau
physical fields~not only the phase! are necessarily discon
tinuous in such a formal ansatz, and hence the gradient
of the corresponding Hamiltonian diverges, as it contain
nonintegrable term proportional to a squaredd function. On
the contrary, in the discrete counterpart of the continu
medium, the Hamiltonian remains finite, but it will take ve
large values for the same reason, leaving very little cha
for stability of such a high-energy configuration~and also for
its existence as a stationary state!.

A more promising continuum-model ansatz that may h
to identify S51/2 vortex solitons in the lattice is

u;exp~6 i uuu/2!, ~8!

where the angular variableu is defined so that it takes value
2p,u,p. A lattice solution of this type can be create
adopting the initial-guess ansatz
01660
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Re~u10,n!5~ . . . ,0,0,1,0, . . . !,

Im~u10,n!5~ . . . ,21,0,0,0, . . . ! ~9!

( . . . stands for zeros! along~say! the rowm510 in the 2D
lattice, the field being set equal to zero everywhere else.
obvious that this dipolelike configuration~shown in Fig. 1!
may indeed be regarded as one conforming to the expres
~8! with the lower sign, provided that the center of the co
figuration is set at the point (m,n)5(10,10) between the two
sites at which the real and imaginary parts of the initial co
figuration ~9! are concentrated.

Solutions generated by initial configurations of the ty
shown in Fig. 1 were constructed both by the direct New
method applied to Eqs.~6!, and by continuation from the
anticontinuum limit ofC50. The Newton method showe
that, for large values of the coupling constantC, the solution
always tended to become symmetric, with both its real a
imaginary parts taking the form of a TLM, despite the asy
metry of the initial configuration. To ensure that the iter
tions nevertheless converge to the asymmetric solu
sought for ~if it exists!, the following ‘‘enforced-
convergence’’ method was used: the imaginary and real p
of the field at the sites where, respectively, the real a
imaginary parts of the field were originally set equal to61,
were set equal to 0~‘‘by hand’’ ! in each iteration. In this
way, we effectively pushed every Newton iteration closer
the basin of attraction of theS51/2 vortex.

The resulting continuation diagram is shown in Fig.
The bottom panel shows that the norm of the solution
creases as a function of the coupling constantC, which can
be understood as a result of involving more lattice sites in
localized vortex state with the increase ofC. Despite the use
of the above-mentioned ‘‘enforced-convergence’’ metho
the solution branch could not be continued to values oC
exceeding some critical valueCcr . For instance, Ccr
52.2531023 for L50.32, which is the largest value ofC in
Fig. 2. Beyond this critical point, the iterations always ga
5-3
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FIG. 2. The bottom panel shows the result
continuation of theS51/2 localized vortex gen-
erated by the initial configuration displayed i
Fig. 1, in terms of the solution’s norm
A(m,nuum,nu2, vs the coupling constantC. It was
not possible to continue the branch of theS
51/2 ~asymmetric, see Fig. 2! solution beyond
the upper-bound valueC52.2531023 marked in
the bottom panel, despite using the ‘‘enforce
convergence’’ technique detailed in the text. F
C.2.2531023, the Newton method always con
verges to a different,symmetricsolution of the
TLM type ~which was mentioned in the text!, in-
stead of the asymmetric vortex. The eigenvalu
produced by the linear stability analysis of th
solution corresponding to the last point in the bo
tom panel~i.e., forC52.2531023) are shown in
the top panel, wherev r andv i stand for the real
and imaginary parts of the eigenfrequencyv of
the linear stability problem.
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2.
rise to a symmetric stationary configuration containi
TLMs in the real and imaginary parts of the solution. T
topological charge of this configuration can be identified
S51; however, both its constituent TLMs are oriented alo
one direction, in contrast with the crosslikeS51 vortex that
was studied in Ref.@10# and displayed in the previous se
tion. We will return to this different type ofS51 vortex
01660
s
g

below. Thus, theS51/2 vortices may exist only in strongly
discrete lattices, with the spacingh.C21/2'21 ~for L
50.32), according to Eq.~2!.

The linear stability analysis of the vortices with the ha
integer topological charge always produced a formally u
stable pair of eigenvalues. However, these are found at
limit of the numerical precision; see the top panel in Fig.
ing
s at the
e
hase
t

, is that
FIG. 3. The evolution of theS51/2 vortex is shown, forC50.001 andL50.32, in terms of the contour plots of the phase field, start
from the numerically exact stationary vortex. The top left, top right, bottom left, and bottom right panels display the phase field
moments of timet5225, t5540, t5850, andt51170, respectively. A phase change of'p is observed in a contour surrounding th
solution in all four panels, verifying the persistence of theS51/2 vortex. In the top left panel, the gray scale shows the variation of the p
between'0 ~the lightest color of the pattern! and'p ~the darkest gray color of the pattern!; similarly for the bottom left panel. For the righ
panels, the phase has a difference between'0 ~the light gray color of the pattern! and'2p ~the black color in the pattern!, which is again
a phase difference ofp. The reversal of the gray scale is a mere artifact of the plotting program; what is really important, in all cases
a phase change of'p can be observed.
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This means that even if this instability is not spurious~which
cannot be definitely claimed within the available numeri
accuracy!, it will become manifest only at extremely larg
times (*1010), which are not relevant for the computation
time scales probed here, and may also be irrelevant
physical applications.

To observe dynamical evolution of the fractional
charged vortices, we simulated the full nonlinear equati
~3!, starting with the initial configuration in the form of th
ansatz~9!. The results are displayed in Fig. 3 in terms of t
phase of the complex solution. It is clearly seen that the
phase change ofp present in the initial condition is pre
served during the simulation time. Detailed consideration
the solution~data not shown! demonstrates that the pha
differences ofp/2 between the top and bottom sides of t
pattern are maintained in both the real and imaginary part
the solution. Hence, the total phase shift nested in the f
tionally charged discrete vortex isp, as can be directly ob
served in the four panels of Fig. 3. A similar stable oscil
tory behavior is observed in the 1D analog of the soluti
see Sec. III below.

It is relevant to stress again that the topological charge
the vortex may change in time, as it is not a dynamical
variant in the lattice system. The actual conservation of
initial semi-infinite charge in the 2D DNLS model, demo
strated above, can be contrasted with the reintegerizatio
fractional charges in quantum lattices, reported in Ref.@15#.
Thus we conclude that theS51/2 vortices in the 2D DNLS
model maintain their fractional-charge nature for very lo
times, suggesting the possibility of experimental observa
of these vortices, albeit in strongly discrete~weakly coupled!
lattice systems.

As mentioned above, forC.2.2531023 ~and L50.32)
the Newton iterations always converge not to theS51/2 vor-
tices, but rather toS51 ones, which are, however, differen
from the cross-shaped vortices found in Ref.@10#. As was
also mentioned above, these vortices consist of two alig
TLMs in the real and imaginary parts of the solution, whi
produce a total phase change of 2p on a contour around the
solution. The fact that such solutions were not considere
previous work@10# prompted us to study them in more d
tail. In particular, it was found that these vortices areless
energetically favorable than the ‘‘more two-dimensiona
crosslikeS51 stable vortices found in Ref.@10#, in which
the real and imaginary parts of the solution consist of t
quasi-1D TLMs oriented along two orthogonal lattice dire
tions. For example, forL50.32 andC50.1, theS51 vortex
found here~see the lower-row panels in Fig. 3! has the en-
ergy @calculated as the value of the Hamiltonian~4!# Enew
520.899, while the crosslikeS51 vortex from Ref.@10#
gives rise to the energy valueEold521.794 for the same
values ofL andS. In accord with this, the range of stabilit
of the S51 vortices found here is smaller~although not
much smaller! than that of the previously studied cros
shaped ones. In particular, we have found that, for the fi
frequencyL50.32, an oscillatory instability of the prese
vortex sets in atC'0.11, which is to be compared to
similar instability thresholdC'0.126 for the crosslike vor-
tex found at the same value of the frequencyL.
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Finally, we note that the existence of the two distin
types of discreteS51 vortex, with the angle 0~here! and
p/2 ~in the previously known solution! between the constitu
ent quasi-1D TLM components in their real and imagina
parts, also prompted us to look for discrete vortices co
posed of two quasi-1D TLMs oriented at different angles,
particular by placing one TLM along a lattice axis and t
other TLM along a diagonal. However, at least for typic
values of the coupling constantC for which the vortices
considered above exist, the Newton iterations did not c
verge to stationary configurations with such an initial sha
even though they can be found very close to the antic
tinuum limit ~at extremely small values ofC); this is, of
course, to be expected, as in the limitC50 any configura-
tion is a formal solution.

III. ANALOGS OF SÄ1Õ2 VORTICES IN THE
ONE-DIMENSIONAL LATTICE

Given the findings of the previous section, it is natural
reconsider the 1D model, and search for 1D analogs of
S51/2 vortices found in the 2D lattice; these should be d
ferent from the previously considered TLMs@8,9#. To con-
struct such 1D modes, we use techniques similar to th
applied to the 2D model. In the 1D lattice~containing 100
sites!, we start from the anticontinuum limit (C50), with
the imaginary part of the field having values21 at, say, the
siteni547 and zero elsewhere, and the real part having v
ues 1 at, say,nr553 and zero elsewhere. As would be e
pected, the larger initial distance between the constitu
pulses gives the possibility of a wider~in terms ofC) do-
main of existence of the 1D patterns sought for.

The norm of the stationary solution thus found is sho
in the left panel of Fig. 4 as a function ofC. The enforced-
convergence method described in the previous section
also used here in the following form: the imaginary part
the field atnr553, and the real part atni547, were set to
zero ‘‘by hand’’ in every iteration of the Newton method. B
means of this approach, a branch of the 1D analog of thS
51/2 vortex solution could be continued up toC'0.025.
However, as can be seen in the right panel of Fig. 4, wh
shows the imaginary part of the field at the sitesn551 and
52, which should be almost zero for the solution consider
the imaginary part of the field at the latter site actually
ready starts to diverge atC'0.01. From this value ofC
onward, the basin of attraction of the 1D analog of t
S51/2 vortex becomes very narrow.

The time evolution of this 1D solution is shown in Fig.
which shows the evolution of the real and imaginary parts
the field at the sitesni547 andnr553. Similar to what was
observed for the 2D vortices withS51/2, their 1D analogs
are also dynamically stable: as seen in Fig. 5, theS51/2
solution in the 1D lattice is characterized by harmonic os
lations of its intrinsic phase, while the local powers~squared
amplitudes! of the field,uunu2, are time independent.

IV. CONCLUSIONS

The aim of this work was to search forlocalizedvortex-
like solutions in two-dimensional nonlinear dynamical la
5-5
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FIG. 4. In the left panel, the normA(nuunu2 of the 1D counterpart of theS51/2 vortex is shown as a function of the coupling consta
C. The right panel shows theC dependence of the imaginary part of the field at the sitesnr21 ~circles stand for the data points and a
connected by a solid line! andnr22 ~stars are the data points and are connected by a dashed line!. It is seen from the right panel that, a
C.0.01, the imaginary part of the field at the sitenr21 starts to diverge, and the system tends to become more symmetric, turning
pattern consisting of TLMs in both the real and imaginary parts of the solution.
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tices with a fractional~in fact, semi-integer! topological
charge ~‘‘discrete vorticity’’! S, which may, generally, be
possible in discrete media, in contrast with continua.
means of numerical methods, we have demonstrated
such a stationary solution, with the topological chargeS
51/2, indeed exists in the 2D discrete cubic nonlinear Sch¨-
dinger equation. Analysis of the equation linearized about
S51/2 vortex shows that, even though this structure may
01660
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e
e

subject to an instability, such an instability would be e
tremely weak and, in any case, not relevant for the ti
scales considered here. The instability, if any, would not
relevant for any physical application either, which makes
S51/2 localized vortices physically meaningful objects. D
rect simulations of the full equation have shown that the
vortices are, indeed, stable, preserving their semi-integer
ticity. This result can be contrasted to a recently repor
f the
panel.
FIG. 5. Time evolution of the real and imaginary parts of the field in the 1DS51/2 solution at the sitesnr andni is displayed in the
bottom panel. The initial configuration was the exact asymmetric solution~from Fig. 4! for C50.005. The dotted, solid, and~overlapping!
dashed and dash-dotted curves show, respectively, the time evolution of the real part of the field at the sitenr , the imaginary part atni , the
imaginary part atnr , and the real part atni . Notice thep/2 phase difference between the oscillations of the real and imaginary parts o
field at both sitesnr andni . The spatial profile of the field corresponding to the last instant of the time evolution is shown in the top
The solid line with circles and the dashed one with stars show, respectively, the imaginary and real parts of the solution.
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finding, according to which initially seeded fraction
charges in quantum lattice models dynamically rearra
themselves into integer charges. Beyond a critical value
the coupling constant, we were unable to continue theS
51/2 branch; the Newton iterations converge in this case
a different type of integer-charged (S51) vortex soliton,
consisting of two aligned quasi-1D twisted localized mod
carrying the real and imaginary parts of the solution. T
resultingS51 discrete vortices are quite different from th
cross-shaped ones, that were recently found in the same
model, as theS51 vortices found in the present work hav
larger energy and a smaller stability range. They may also
stable, nevertheless. We have also found a counterpart o
S51/2 vortex in the one-dimensional discrete nonline
Schrödinger equation. The latter pattern is a stable localiz
state with intrinsic phase oscillations, which is different fro
the 1D twisted localized modes that are known in the latt
model.
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An interesting topic for future investigations would co
cern the identification of the basin of attraction of solutio
with fractional charge. In particular, it would be interestin
to identify whether instabilities of solutions with a differen
topological charge~or even without topological charge, suc
as, for instance, multiple pulses without phase differen!
could give rise to solutions withS51/2. Naturally, from the
considerations presented above, one can infer that su
basin of attraction would be larger for smallerC. A detailed
investigation of these and related questions is currently un
way.
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