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Localized vortices with a semi-integer charge in nonlinear dynamical lattices
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The topological charg& of vortexlike configurations in two-dimension&D) dynamical lattices need not
necessarily be integer, nor is it a dynamical invariant. Accordingly, we demonstrate that the discrete nonlinear
Schralinger (DNLS) equation in 2D has stationary solutions in the form of a vortex \Bithl/2, which does
not exist in the model's continuum counterpart. Analysis of the DNLS equation linearized about the vortex
shows that it is stable except for, possilbdxtremely wealinstabilities (at the level of numerical precisigpn
Direct simulations of the full DNLS model in 2D show that tBe= 1/2 vortex soliton is a stable oscillating
solution. This behavior of classical dynamical lattices is in contrast with a recently reported result by Clay
et al.[Phys. Rev. Lett86, 4085(2001)], according to which fractional chargesduantumlattices are subject
to dynamical rearrangement into integer charges. We also cor&idgrdiscrete vortices that may be built as
a pair of S=1/2 ones. These are different from the cross-sh&ed vortices that were recently found in the
same 2D model. Th8=1 vortices found in this work have larger energy and a slightly smaller stability range.
We also find an analog of th&=1/2 vortices in the 1D DNLS model, which also turns out to be a stable
oscillating soliton, different from the twisted localized modes recently found in the 1D model.
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I. INTRODUCTION The 2D version of the model is
Nonlinear lattice equations naturally arise as models of i Ymn=—CAotmn—|¥mnl2¥mn, ©)

various physical systems, and are also a subject of interest in ) . ,

their own right as an important class of nonlinear dynamicalvhere the 2D discrete Laplacian if;¢mn=¥m:1n
systemd1,2]. A fundamental lattice model is represented by #mn+ 1t ¥m-1nt ¥mn-1~4¢mn. Both the 1D and 2D
the discrete nonlinear Schdimger(DNLS) equation with cu- _equatlons can be derived from a Hamiltonian. In the 2D case,
bic on-site nonlinearity, which finds straightforward applica- 't 1S

tions, both theoreticdl3] and experimentdl4], in the trans-

verse dynamics of arrays of optical waveguidésers with H= 2 C(| ¥ms 10— ¥mnl?

the Kerr nonlinearity. It is also used as a generic asymptotic m.n ’ ’

envelope equation for nonlinear discrete equations of the 1

Klein-Gordon (including sine-Gordon type [5], which +|¢m,n+1—<//m,n|2)—§|¢m,n|4 _ (4)

model physical phenomena ranging from Josephson junc-
tions[6] to the local denaturation of the DNA double strand . . .
[7]. It is customary to seek standing-wave solutions to Egs.

The one-dimensiondlLD) DNLS equation is (1)=(3) in the form
‘/’m,n:eXF(iAt)um,ny (5)

whereA is the frequency of the solution. Recently, localized
where ¢, is the dynamical fieldn is the lattice discrete co- 1D solutions subject to the symmetry constrairft—n) =
ordinate, andA =, 1+ ¥n_1—2¢, is the 1D discrete —u(n), with n=1,2,3 ... (where the lattice site witm
Laplacian. The coupling constaf is related to the lattice =0 either hasi,=0, or is dropped by definitiorwere found
spacingh by [8]. Their linear stability and dynamical properties were ana-
lyzed in Ref.[9]. Thesetwisted localized mode§TLMs)
C=1h2. (2 were then used to construct stable two-dimensional discrete

i¢n:_CA2¢n_|¢n|2¢na (1)
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vortex solitons in Ref[10] (2D vortices were mentioned in will see herein that the same result is not true for classical
some earlier work$2,11], but their detailed structure and Hamiltonian dynamical lattices, such as that governed by the
stability were not studied beforeln particular, the fact that DNLS equation. Instead, we fingtableoscillating 2D soli-
the TLM modes have an inherent phase difference be- tons with semi-integer vorticity. This result prompts us then
tween the regions— — andn— +o was crucial in con- to0 reconsider the 1D case; as a result, we also find stable 1D
Structing the vortices in Retlo]' name'y, by using a set of counterparts of th&s=1/2 vortex solitons. Add|t|0na”y, in
two such modes, one in the real part of the solution alonghe 2D lattice we study integer-charged vorticesith S
one of the two spatial directions, and another one in the=1) to which the semi-integer-charged ones would recom-
imaginary part along the orthogonal direction, & Phase bine if they were subject to reintegerization. These prove to
difference may be lent to the entire pattern. This procedur@e stable localized solutions different from the cross-shaped
makes it possible to generate a discrete cross-shaped vorteRes considered in Refgd,10].
soliton, whose structure qualitatively resembles the The paper is organized as follows. In Sec. Il we present
continuum-limit vortex wave form ~exp(#6), 6 being the Stationary solutions in the form of localized vortices in two
polar angle in the lattice plane. The investigation of the lin-dimensions with the semi-integer topological chagye1/2,
ear stability of these solitons in RdfL0] revealed that the and also the stable vortices witB=1 into which theS
TLM structure of their constituents may give rise to an os-=1/2 ones would recombine if they were unstable. THase
Ci||at0ry instabi"ty at |arge values of the Coup"ng constGnt = 1 stable vortices exist despite the fact that the recombina-
(this instability is similar to those considered in Ré®12)).  tion does not actually take place. In Sec. llI, following the
However, the cross-shaped vortices stableif the coupling ~ analogy with the 2D problem, similar semi-integer-charged
constant is smaller than a certain critical valGes C,,, i.e., ~ solutions are studied in a 1D DNLS model, and are also
if the model is not too close to its continuum limit. Vortices found to be stable oscillatory solutions. The results are sum-
with the double topological charge were also found in Refmarized in Sec. IV.
[10], but they all turned out to be unstable; it is very plau-
sible that all the higher-order vortices are unstable too. It |I. SEMI-INFINITE-CHARGE VORTICES, AND S=1
should be noted, in passing, that it has been conjectured VORTICES, IN THE TWO-DIMENSIONAL LATTICE
(work toward proving that conjecture is currently in progress o ] ) ) ) )
[13]) that the presence of the phase shift in TLMs and, in A. Reuvisiting discrete localized vortices with an integer charge
general, in pulse-antipulse bound states, of which TLMs are Before considering the fractionally charged lattice vorti-
a special case, is generically related to potential oscillatorges in detail, it is relevant to summarize the approach to the
instabilities. study of integer-charge ones, developed in REf]. In that
Thus, recent work8—10] has revealed the possibility of work a dual twisted ansatz was considered, consisting of a
existence of stable solutions with an intedierfact, unitary ~ TLM in the real and a TLM in the imaginary parts of the
topological charge in 2D dynamical lattices. A nontrivial as-solution, a configuration with a2 phase shift nested in it,
pect of this result is that, contrary to the continuum modelshence bearing a nontrivial vorticity. This configuration was
in lattice systems the topological chargenist a dynamical fed, as an initial guess, into a Newton solver of the system of
invariant. Therefore, the very existence of such stationaryionlinear algebraic equations
solutions is not obvious. Moreover, in continuum models lo-
calized vortices can easily be found, but in most cases they AU n=CApUpm nF [Um, ol U n, (6)
are strongly unstable. Only nonlinearities of a special type,
such as those combining quadratic and self-defocusing cubihich results from the substitution of the anseinto Eq.
terms, make it possible to construct families of localized vor-(3). Notice that one of the parameteksandC can be scaled
tices that are stable in a broad parametric regibf. out from Eq. (6); however, for the sake of clarity of the
Since the definition of the topological charge in dynami-results to be obtained below, we keep both parameters, fixing
cal lattices is less precise than in continuum media, the queg\ and studying the behavior of solutions as a functioiCof
tion naturally arises as to wheth&actionally chargedvor- The Newton iterations typically converge up to a pre-
tices are possible in 2D lattices. In fact, we will focus solelyscribed accuracjusually O(10™8)]. Once the solution was
on the single noninteger value of the topological chaigre Obtained, linear stability analysis was performed, substituting
vorticity) S=1/2. Upon finding such solutions, we will in-  #mn=exXpIAY[#mntvma()] with infinitesimal perturba-
vestigate their stability by using them as initial conditions intions vy, 4(t) into Eq. (3), to derive the linearized equation
direct numerical simulations. for vmn,
An additional motivation for this work is the recently _
published results concerning fractionally charged states in v, ,+CAovmn+2|Um | ?0mn+t u%’nv;’n—/\vm’n=0,
guantumlattice modeld15]. That work aimed to explain the (7)
absence of experimental observation of fractionally charged
solitons in#-conjugated polymers and charge-density-wavewhere* denotes complex conjugation. Looking for solutions
solids. It was found that, once fractional charges were introof Egs. (7) in the form v, ,=amn,expiot)
duced “by hand” in the quantum-lattice models considered,+by,,exp{w*t) leads to an eigenvalue problem for[10],
further dimerization of the semi-integer charges into integewhich can be solved numerically. It was thus found that the
ones inevitably followed, as the system evolved in time. Wediscrete vortex solitons with the unitary topological charge

016605-2



LOCALIZED VORTICES WITH A SEMI-INTEGER . . . PHYSICAL REVIEW E 65 016605

FIG. 1. The initial configuration generating a
fractionally charged solution witls=1/2 for A
=0.32 andC=0.001. The top left and right pan-
els show the absolute value and phase of the field,
respectively. The bottom left and right panels
show the real and imaginary parts of the field,

respectively.
.20
S=1 are stable forC<C,. For instance,C.(A=0.32) Re(uygn)=(...,0,0,1,0...),
~0.126. If C>C,,, one of the eigenvalues collides with
the continuous spectrum and, due to its opposite Krein sig- Im(uyen)=(...,—1,0,00...) 9

nature(see, e.g., Ref$2,9,12,16,17), the corresponding bi-
furcation gives rise to a quartet of eigenvalues which gener¢ . . . stands for zerosalong(say the rowm=10 in the 2D
ate an oscillatory instability. This is the so-called lattice, the field being set equal to zero everywhere else. It is
Hamiltonian Hopf bifurcation18]. It should be remarked obvious that this dipolelike configuratiaishown in Fig. 1
that this instability scenario is inherited from the 1D con- may indeed be regarded as one conforming to the expression
stituents of the 2D discrete vorteke., two orthogonally (8) with the lower sign, provided that the center of the con-
oriented TLMS. In fact, the 2D nature of the vortex does not figuration is set at the point§,n) =(10,10) between the two
strongly alter the coupling strength at which the instability sites at which the real and imaginary parts of the initial con-
occurs, in comparison with the 1D counterpart of the TLM figuration (9) are concentrated.
type. In particular, the 2D critical value is to be compared to ~ Solutions generated by initial configurations of the type
the critical valueC.,=0.138 found for the same frequency shown in Fig. 1 were constructed both by the direct Newton
A=0.32in the 1D system. method applied to Eqg6), and by continuation from the
anticontinuum limit ofC=0. The Newton method showed
that, for large values of the coupling const&tthe solution
always tended to become symmetric, with both its real and
A vortex with a topological chargé= 1/2 can be formally  imaginary parts taking the form of a TLM, despite the asym-
sought for in a continuum medium as a solutie@xp(#/2).  metry of the initial configuration. To ensure that the itera-
In fact, in the continuum setting it cannot exist becauseions nevertheless converge to the asymmetric solution
physical fields(not only the phaseare necessarily discon- sought for (if it exists), the following “enforced-
tinuous in such a formal ansatz, and hence the gradient pagbnvergence” method was used: the imaginary and real parts
of the corresponding Hamiltonian diverges, as it contains &f the field at the sites where, respectively, the real and
nonintegrable term proportional to a squaeélnction. On  imaginary parts of the field were originally set equaltd,
the contrary, in the discrete counterpart of the continuumyere set equal to @by hand”) in each iteration. In this

medium, the Hamiltonian remains finite, but it will take very way, we effectively pushed every Newton iteration closer to
large values for the same reason, leaving very little chancghe basin of attraction of th8= 1/2 vortex.

B. Vortices with the semi-integer topological charge

for stability of such a high-energy configurati¢end also for The resulting continuation diagram is shown in Fig. 2.
its existence as a stationary state The bottom panel shows that the norm of the solution in-
A more promising continuum-model ansatz that may helpcreases as a function of the coupling const@ntvhich can
to identify S= 1/2 vortex solitons in the lattice is be understood as a result of involving more lattice sites in the

localized vortex state with the increase@fDespite the use
of the above-mentioned “enforced-convergence” method,
the solution branch could not be continued to valueof
where the angular variablgis defined so that it takes values exceeding some critical valueC.. For instance, C,
—m<6<. A lattice solution of this type can be created, =2.25x 10 2 for A =0.32, which is the largest value &fin
adopting the initial-guess ansatz Fig. 2. Beyond this critical point, the iterations always gave

u~exp *il6|/2), (8)
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! ' ' s ' ' FIG. 2. The bottom panel shows the result of
continuation of theS=1/2 localized vortex gen-
erated by the initial configuration displayed in
Fig. 1, in terms of the solution’s norm
e o ° © ° 1 VE mnlUmnl?, Vs the coupling constar@. It was
not possible to continue the branch of tise
=1/2 (asymmetri¢ see Fig. 2 solution beyond

. . o the upper-bound valugé=2.25x< 10~ 2 marked in
s -1 -0.5 0 05 1 15 the bottom panel, despite using the “enforced-

o convergence” technique detailed in the text. For

C>2.25x 103, the Newton method always con-
verges to a differentsymmetricsolution of the
TLM type (which was mentioned in the texin-
b stead of the asymmetric vortex. The eigenvalues
. produced by the linear stability analysis of the
4 solution corresponding to the last point in the bot-
tom paneli.e., forC=2.25< 10" %) are shown in
the top panel, where, and w; stand for the real
and imaginary parts of the eigenfrequensayof

. 25 the linear stability problem.
C x10°

05 1

rise to a symmetric stationary configuration containingbelow. Thus, theS=1/2 vortices may exist only in strongly
TLMs in the real and imaginary parts of the solution. Thediscrete lattices, with the spacing>C~?~21 (for A
topological charge of this configuration can be identified as=0.32), according to Eq2).

S=1; however, both its constituent TLMs are oriented along The linear stability analysis of the vortices with the half-
one direction, in contrast with the crosslike=1 vortex that integer topological charge always produced a formally un-
was studied in Refl10] and displayed in the previous sec- stable pair of eigenvalues. However, these are found at the
tion. We will return to this different type o5=1 vortex limit of the numerical precision; see the top panel in Fig. 2.

3
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FIG. 3. The evolution of th&=1/2 vortex is shown, fo€=0.001 andA =0.32, in terms of the contour plots of the phase field, starting
from the numerically exact stationary vortex. The top left, top right, bottom left, and bottom right panels display the phase fields at the
moments of timet=225, t=540, t=850, andt=1170, respectively. A phase change-efr is observed in a contour surrounding the
solution in all four panels, verifying the persistence of 8w1/2 vortex. In the top left panel, the gray scale shows the variation of the phase
between~=0 (the lightest color of the patteriand~ = (the darkest gray color of the pattgérsimilarly for the bottom left panel. For the right
panels, the phase has a difference betweén(the light gray color of the pattefrand~ — 7 (the black color in the patteynwhich is again
a phase difference af. The reversal of the gray scale is a mere artifact of the plotting program; what is really important, in all cases, is that
a phase change ef 7 can be observed.
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This means that even if this instability is not spuridusich Finally, we note that the existence of the two distinct

cannot be definitely claimed within the available numericaltypes of discreteS=1 vortex, with the angle Qhere and

accuracy, it will become manifest only at extremely large /2 (in the previously known solutigrbetween the constitu-

times (=10, which are not relevant for the computational ent quasi-1D TLM components in their real and imaginary

time scales probed here, and may also be irrelevant foparts, also prompted us to look for discrete vortices com-

physical applications. posed of two quasi-1D TLMs oriented at different angles, in
To observe dynamical evolution of the fractionally particular by placing one TLM along a lattice axis and the

charged vortices, we simulated the full nonlinear equationsther TLM along a diagonal. However, at least for typical

(3), starting with the initial configuration in the form of the values of the coupling constai@ for which the vortices

ansatz(9). The results are displayed in Fig. 3 in terms of theconsidered above exist, the Newton iterations did not con-

phase of the complex solution. It is clearly seen that the neterge to stationary configurations with such an initial shape,

phase change ofr present in the initial condition is pre- even though they can be found very close to the anticon-

served during the simulation time. Detailed consideration otinuum limit (at extremely small values o€); this is, of

the solution(data not showndemonstrates that the phase course, to be expected, as in the lir@it=0 any configura-

differences ofw/2 between the top and bottom sides of thetion is a formal solution.

pattern are maintained in both the real and imaginary parts of

the solution. Hence, the total phase shift nested in the frac- lll. ANALOGS OF S=1/2 VORTICES IN THE

tionally charged discrete vortex is, as can be directly ob- ONE-DIMENSIONAL LATTICE

f;?’%i;\r;\fir;? ]icguorbgz?\il:d ?rf1 Tr']ge fbAawa;rlltl)lgro?t?hbelesglslftliléi' Givgn the findings of the previous section, it is natural to

see Sec. Il below. reconsider the 1D model, and search for 1D analogs of the

; . . =1/2 vortices found in the 2D lattice; these should be dif-
It is relevant to stress again that the topological charge o : .
N L .~ =" “terent from the previously considered TLNI8,9]. To con-
the vortex may change in time, as it is not a dynamical in-

variant in the lattice system. The actual conservation of theStrUCt such 1D modes, we use techniques similar to those

initial semi-infinite charge in the 2D DNLS model, demon- applied to the 2D model. In the 1D lattideontaining 100

strated above, can be contrasted with the reintegerization Q te?, we start frcim fttf;]e ?”Hjc‘;”t"?““m I“rglst?_tO), W':n
fractional charges in quantum lattices, reported in RES). € |milg|nary part of the Tield having vaiu al, say, the
Thus we conclude that th®=1/2 vortices in the 2D DNLS site ;=47 and z_ero elsewhere, and the real part having val-
model maintain their fractional-charge nature for very Iongues 1 at, saynr—53_ "’}r.]d Z€ero elsewhere. As would be.ex-
times, suggesting the possibility of experimental observatiorpeCted’ the larger initial distance between the constituent

: o . pulses gives the possibility of a widéin terms ofC) do-
Ic;ft:ircl:isgy\gt)grfg s, albeit in strongly discréteeakly coupled main of existence of the 1D patterns sought for.

As mentioned above, fo€>2.25x 102 (and A =0.32) The norm of the stationary solution thus found is shown

the Newton iterations always converge not to 8¥1/2 vor- in the left panel of Fig. 4 as a f“T‘C“O” a The enforc_ed—
tices, but rather t&=1 ones, which are, however, different convergence mgthod descrl_bed in the Previous section was
from the cross-shaped vortices found in REf0]. As was also _used her_e in the following form: th_e imaginary part of
also mentioned above, these vortices consist of two aIigneH1e field atn, =53, and the real part af; =47, were set to

TLMs in the real and imaginary parts of the solution, which ;eégns)épg?g ;n er\ézrgh'tzegggg g}eth'\ée\ivéognrgle;hogétﬁg
produce a total phase change af n a contour around the IS app ' 9

solution. The fact that such solutions were not considered in. 1/2 vortex solution could be continued up @~0.025.

: ; However, as can be seen in the right panel of Fig. 4, which
previous work[10] prompted us to study them in more de- . . ! .
tail. In particular, it was found that these vortices &es shows the imaginary part of the field at the sites51 and

energetically favorable than the “more two-dimensional” 52, which should be almost zero for the solution considered,

crosslikeS=1 stable vortices found in Ref10], in which the imaginary part of the field at the latter site actually al-

the real and imaginary parts of the solution consist of twoready starts to diverge al~0.01. From this value o

quasi-1D TLMs oriented along two orthogonal lattice direc—grlwla/‘;d' ﬂ:e bbasin of attraction of the 1D analog of the
tions. For example, foh =0.32 andC=0.1, theS=1 vortex . vortex becomes very narrow. N
found here(see the lower-row panels in Fig) Bas the en- The time evolution of this 1D solution is shown in Fig. 5,

A which shows the evolution of the real and imaginary parts of
ergy [calculated as the value of the Hamiltoniéf)] E, e, . T - -
—0.899, while the crosslik&=1 vortex from Ref.[10] the field at the sites; =47 andn,=53. Similar to what was

gives rise to the energy valuByy= —1.794 for the same observed for the 2D vortices wit8=1/2, their 1D analogs
o .

values of A andS. In accord with this, the range of stability arcla ?ISO. d)t/r?aTg?"%/t' stqble;]as iee_n 'g bFIgH 5 3%1/2 1
of the S=1 vortices found here is smalldalthough not solution 1n the attice 1S characterized by harmonic oscil-

much smaller than that of the previously studied cross- lations of its intrinsic phase, while the local powéssjuared

shaped ones. In particular, we have found that, for the fixe@mp“tUdes; of the field, |uy|?, are time independent.
frequencyA =0.32, an oscillatory instability of the present
vortex sets in atC~0.11, which is to be compared to a
similar instability thresholdC~0.126 for the crosslike vor- The aim of this work was to search ftocalizedvortex-

tex found at the same value of the frequercy like solutions in two-dimensional nonlinear dynamical lat-

IV. CONCLUSIONS
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FIG. 4. In the left panel, the nornd=,[u,|? of the 1D counterpart of th8= 1/2 vortex is shown as a function of the coupling constant
C. The right panel shows th€ dependence of the imaginary part of the field at the sites1 (circles stand for the data points and are
connected by a solid lineandn,—2 (stars are the data points and are connected by a dashgdtirseseen from the right panel that, at
C>0.01, the imaginary part of the field at the site-1 starts to diverge, and the system tends to become more symmetric, turning into a
pattern consisting of TLMs in both the real and imaginary parts of the solution.

tices with a fractional(in fact, semi-integgr topological  subject to an instability, such an instability would be ex-

charge (“discrete vorticity”) S, which may, generally, be tremely weak and, in any case, not relevant for the time
possible in discrete media, in contrast with continua. Byscales considered here. The instability, if any, would not be
means of numerical methods, we have demonstrated thaélevant for any physical application either, which makes the
such a stationary solution, with the topological cha®e S=1/2 localized vortices physically meaningful objects. Di-

=1/2, indeed exists in the 2D discrete cubic nonlinear Schrorect simulations of the full equation have shown that these
dinger equation. Analysis of the equation linearized about thgortices are, indeed, stable, preserving their semi-integer vor-
S=1/2 vortex shows that, even though this structure may béicity. This result can be contrasted to a recently reported

1 T T T T T T T T T

0 5 10 15 20 25 30 35 40

FIG. 5. Time evolution of the real and imaginary parts of the field in theSEDL/2 solution at the sites, andn; is displayed in the
bottom panel. The initial configuration was the exact asymmetric solgtiom Fig. 4 for C=0.005. The dotted, solid, ardverlapping
dashed and dash-dotted curves show, respectively, the time evolution of the real part of the field ahthetsitémaginary part ab; , the
imaginary part ah,, and the real part at; . Notice thew/2 phase difference between the oscillations of the real and imaginary parts of the
field at both sites, andn; . The spatial profile of the field corresponding to the last instant of the time evolution is shown in the top panel.
The solid line with circles and the dashed one with stars show, respectively, the imaginary and real parts of the solution.
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finding, according to which initially seeded fractional  An interesting topic for future investigations would con-
charges in quantum lattice models dynamically rearrangeern the identification of the basin of attraction of solutions
themselves into integer charges. Beyond a critical value ofvith fractional charge. In particular, it would be interesting
the coupling constant, we were unable to continue $he to identify whether instabilities of solutions with a different
=1/2 branch; the Newton iterations converge in this case t@opological chargéor even without topological charge, such

a different type of integer-chargedS€ 1) vortex soliton, as, for instance, multiple pulses without phase differgnce
consisting of two aligned quasi-1D twisted localized modes¢oyld give rise to solutions wits= 1/2. Naturally, from the
carrying the real and imaginary parts of the solution. Theggnsiderations presented above, one can infer that such a
resultingS=1 discrete vortices are quite different from the y55in of attraction would be larger for smaller A detailed

cross-shaped ones, that were recently found in the same 20\ estigation of these and related questions is currently under
model, as thes=1 vortices found in the present work have way.

larger energy and a smaller stability range. They may also be
stable, nevertheless. We have also found a counterpart of the
S=1/2 vortex in the one-dimensional discrete nonlinear
Schralinger equation. The latter pattern is a stable localized
state with intrinsic phase oscillations, which is different from .
the 1D twisted localized modes that are known in the lattice This research was supported by the U.S. Department of
model. Energy, under Contract No. W-7405-ENG-36.
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